PRINT Cipher

Berkay Akçören

MIDDLE EAST TECHNICAL UNIVERSITY

Informatics Institute, Department of Cyber Security

Last Modified: December 18, 2024 Created: December 18, 2024

General Information

Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- **Block Size: 48 or 96 bits**

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- **Effective Key Length:** $\frac{5}{3} \times$ Block Size = $SK_1 || SK_2$

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- **Effective Key Length:** $\frac{5}{3} \times$ Block Size = $SK_1 || SK_2$
- Rounds: 48 or 96

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- **Effective Key Length:** $\frac{5}{3} \times$ Block Size = $SK_1 || SK_2$
- Rounds: 48 or 96
- \blacksquare There is no key schedule, constant round key

General Information

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- **Effective Key Length:** $\frac{5}{3} \times$ Block Size = $SK_1 || SK_2$
- Rounds: 48 or 96
- \blacksquare There is no key schedule, constant round key

Security Goals

Side-channel attacks are not considered

General Information

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- **Effective Key Length:** $\frac{5}{3} \times$ Block Size = $SK_1 || SK_2$
- Rounds: 48 or 96
- \blacksquare There is no key schedule, constant round key

Security Goals

- Side-channel attacks are not considered
- Related-key attacks are not considered

PRINT Cipher: Round Function

General Information

Key Addition: Cipher state xor with round key SK_1

[PRINT Cipher](#page-1-0) **[Linear Cryptanalysis](#page-26-0) Community Community** [Differential Cryptanalysis](#page-34-0) [Invariant Subspace](#page-42-0)

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- **Linear Diffusion:** Cipher state shuffled with fixed permutation layer

[PRINT Cipher](#page-1-0) **[Linear Cryptanalysis](#page-26-0) Community Community** [Differential Cryptanalysis](#page-34-0) [Invariant Subspace](#page-42-0)

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- **Linear Diffusion:** Cipher state shuffled with fixed permutation layer
- **Round Counter addition** RC_i : Round constant addition with bitwise xor

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- **Linear Diffusion:** Cipher state shuffled with fixed permutation layer
- **Round Counter addition** RC_i : Round constant addition with bitwise xor
- **Keyed Permutation:** Permutation operation on each 3 bit dependent on SK_2

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- **Linear Diffusion:** Cipher state shuffled with fixed permutation layer
- **Round Counter addition** RC_i : Round constant addition with bitwise xor
- **Keyed Permutation:** Permutation operation on each 3 bit dependent on SK_2
- S_{box} Layer: Non-linear S_{box}

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- **Linear Diffusion:** Cipher state shuffled with fixed permutation layer
- **Round Counter addition** RC_i : Round constant addition with bitwise xor
- **Keyed Permutation:** Permutation operation on each 3 bit dependent on SK_2
- S_{box} Layer: Non-linear S_{box}

PRINT Cipher: Round Function

Linear Diffusion Layer

Simple permutation defined as

$$
P(i) = \begin{cases} 3 \times i \mod b - 1 & \text{for} \quad 0 \ge i \ge b - 2, \\ b - 1 & \text{for} \quad i = b - 1. \end{cases}
$$

PRINT Cipher: Round Function

Round Counter Addition

Round counters are generated using n -bit LFSR in the following way

$$
t = 1 + x_{n-1} + x_{n-2}
$$

\n
$$
x_i = x_{i-1}
$$
 for $n-1 \ge i \ge 1$
\n
$$
x_0 = t
$$

[PRINT Cipher](#page-1-0) **[Linear Cryptanalysis](#page-26-0) Community Community** [Differential Cryptanalysis](#page-34-0) [Invariant Subspace](#page-42-0)

PRINT Cipher: S_{box} and Keyed Permutation

Permuted S_{box}

- $K = SK_1||SK_2$
- $SK₁$ is *b*-bit long
- SK_2 is $\frac{2}{3}b$ -bit long, which is $\frac{b}{3}$ pair bits.
- **Change the order of the 3 input bits for different values of** $a_1||a_2$ in SK_2

ϕ $\phi\phi\phi$ $\oplus \oplus \oplus$ ₳₳₳ $\oplus \oplus \oplus$ </u> </u> †† ффф $\oplus \oplus \oplus$ $\oplus \oplus \oplus$ \oplus $\oplus \oplus \oplus$ $\oplus \oplus \oplus$ കകക \bigoplus $\bigoplus RC_i$ ┍ $\frac{SK_2}{S_{box}}$ $SK₂$ $\underline{\begin{matrix} SK_2 \end{matrix}}$ $SK₂$ $SK₂$ $SK₂$ $SK₂$ $SK₂$ $SK₂$ $SK₂$ $\mathfrak{S}K_2$ $SK₂$ $SK₂$ $\mathfrak{S}K_2$ $SK₂$ $\mathfrak{S}K_2$ \mathbf{r} صط \mathbf{r} $\overline{1}$ \mathbf{r} \overline{a} $\overline{}$ يتصد S_{box} S_{box} S_{box} S_{box} S_{box} S_{box} $\boxed{S_{box}}$ S_{box} S_{box} S_{box} S_{box} S_{box} S_{box} S_{box} S_{box}

PRINT Cipher: Round Function

Example single round encryption for $b = 48$ -bit block size

1 Pick key: $SK_1||SK_2$ which is $48 + 32$ bits long.

[PRINT Cipher](#page-1-0) **[Linear Cryptanalysis](#page-26-0) Community Community** [Differential Cryptanalysis](#page-34-0) [Invariant Subspace](#page-42-0)

PRINT Cipher: Round Function

- **1 Pick key:** $SK_1||SK_2$ which is $48 + 32$ bits long.
- **2 Key** xor: $SK_1 \oplus$ STATE

[PRINT Cipher](#page-1-0) [Linear Cryptanalysis](#page-26-0) Cryptanalysis [Differential Cryptanalysis](#page-34-0) [Invariant Subspace](#page-42-0) Invariant Subspace

CROOCOLOGICAL CRYPTAGE CRYP

PRINT Cipher: Round Function

- **1 Pick key:** $SK_1||SK_2$ which is $48 + 32$ bits long.
- **2 Key** xor: $SK_1 \oplus$ STATE
- **B** Linear diffusion: Move bits around

[PRINT Cipher](#page-1-0) **[Linear Cryptanalysis](#page-26-0) Community Community** [Differential Cryptanalysis](#page-34-0) [Invariant Subspace](#page-42-0)

PRINT Cipher: Round Function

- **1 Pick key:** $SK_1||SK_2$ which is $48 + 32$ bits long.
- **2 Key** xor: $SK_1 \oplus$ STATE
- **B** Linear diffusion: Move bits around
- 4 Round counter: $RC_i \oplus STATE$

[PRINT Cipher](#page-1-0) **[Linear Cryptanalysis](#page-26-0) Community Community** [Differential Cryptanalysis](#page-34-0) [Invariant Subspace](#page-42-0)

PRINT Cipher: Round Function

- **1 Pick key:** $SK_1||SK_2$ which is $48 + 32$ bits long.
- **2 Key** xor: $SK_1 \oplus$ STATE
- **B** Linear diffusion: Move bits around
- 4 Round counter: $RC_i \oplus STATE$
- **5 Keyed permutation:** $SK_2 = 32$ bit key. Change the order of the bits OR determine S_{box} for each pair bit

PRINT Cipher: Round Function

- **1 Pick key:** $SK_1||SK_2$ which is $48 + 32$ bits long.
- **2 Key** xor: $SK_1 \oplus$ STATE
- **B** Linear diffusion: Move bits around
- 4 Round counter: $RC_i \oplus STATE$
- **5 Keyed permutation:** $SK_2 = 32$ bit key. Change the order of the bits OR determine S_{box} for each pair bit
- 6 S_{box} layer: Regular S_{box} operation.

Example Case of Linear Cryptanalysis

4-bit Block Example

■ 4-bit input plaintext is encrypted into 4-bit output ciphertext

 $p_3p_2p_1p_0 \xrightarrow{ENC} c_3c_2c_1c_0$

[PRINT Cipher](#page-1-0) **[Linear Cryptanalysis](#page-26-0) Community Communi**

Example Case of Linear Cryptanalysis

4-bit Block Example

■ 4-bit input plaintext is encrypted into 4-bit output ciphertext

 $p_3p_2p_1p_0 \xrightarrow{ENC} c_3c_2c_1c_0$

■ We try to find a relation between arbitrary input and output bits

$$
P(p_2 \oplus p_1 \oplus c_0 = 1) = \frac{1}{2} \pm \epsilon
$$

For a random permutation $\epsilon = 0$

Observation on S_{box}

Possible keys for bit rotations

Attack Idea

Attack Idea

- Assume permutation bit at left-most S_{box} as $SK_2^{(31,30)} = (\ast 0)$
- \Box 2 out of 4 keys this happens
- Probability of left-most bit remains unaltered is $\frac{3}{4}$
- After 1 round of encryption

$$
P(c_{47} = p_{47} \oplus SK_1^{47}) = \frac{1}{2} + 2^{-2}
$$

■ After 2 rounds of encryption

$$
P(c_{47} = p_{47}) = \frac{1}{2} + 2^{-3}
$$

After r rounds of encryption for even r

$$
P(c_{47} = p_{47}) = \frac{1}{2} + 2^{-r-1}
$$

Extended 25-Round Attack

Extended 25-Round Attack

Attack Idea

- Assume $SK_2^{30} = 0$
- Guess $SK_1^{(47,42,37,31,26,21,15,10,5)}$ and $SK_2^{(21,20,19,3)}$ for encryption
- Guess $SK_1^{(47,46,45)}$ and $SK_2^{(18,16)}$ for decryption
- Total of $2^{13} \times 3^3 \approx 2^{17.8}$
- 2 Rounds of encryption and decryption
- If $c_{47}^{enc} = p_{47}^{enc} \oplus SK_1^{47}$ increase the counter of the guess
- Highest counter assumed to be correct guess.

Results

Other Attacks with Different Trials

All attacks require collection of the whole codebook, 2^{48} plaintext-ciphertext pairs.

[PRINT Cipher](#page-1-0) [Linear Cryptanalysis](#page-26-0) Diff**erential Cryptanalysis [Differential Cryptanalysis](#page-34-0) Di**nvariant Subspace
Differential Cryptanalysis Differential Cryptanalysis Differential Cryptanalysis Differential Cryptanalysis Di

Differentials in Print Cipher

Difficulties

- Main technical problem is differentials are Key-dependent
- Without knowing the key, one cannot find the best differential

Differential Distribution Table

Two Differential Attacks

Optimal Characteristic

- There exist a 1-bit to 1-bit difference in every bit location with probability $\frac{1}{4}$
- For r many rounds, there is at least one differential with of one with the probability $(1/4)^r$
- For $r=22$ rounds, one can successfully construct a distinguisher with probability 2^{-44}

Obtaining the roots of PRINT Cipher's permutation layer

- Constructing a 22 round distinguisher requires full codebook i.e. 2^{48} plaintext-ciphertext pairs.
- Attacker can form 2^{47} plaintext pairs for every 1-bit difference
- Therefore, attacker can learn the permutation PK^{r} for $r = 22$ rounds.
- If one can somehow find the roots of permutations i.e. PK by looking at the RK^r , get the permutation key SK_2 and then get the SK_1

Roots of Permutations

Example Case

 $(1, 2, 3, 4, 5)$ is mapped on to $(4, 5, 2, 3, 1)$

Roots of Permutations

Example Case

- $(1, 2, 3, 4, 5)$ is mapped on to $(4, 5, 2, 3, 1)$
- $(1, 2, 3, 4, 5)$ is mapped on to $(2, 4, 1, 5, 3)$

Roots of Permutations

Example Case

- $(1, 2, 3, 4, 5)$ is mapped on to $(4, 5, 2, 3, 1)$
- $(1, 2, 3, 4, 5)$ is mapped on to $(2, 4, 1, 5, 3)$
- $(2, 4, 1, 5, 3)$ is a square root of $(4, 5, 2, 3, 1)$

Roots of Permutations

Example Case

- $(1, 2, 3, 4, 5)$ is mapped on to $(4, 5, 2, 3, 1)$
- $(1, 2, 3, 4, 5)$ is mapped on to $(2, 4, 1, 5, 3)$
- $(2, 4, 1, 5, 3)$ is a square root of $(4, 5, 2, 3, 1)$
- $(1, 2, 3, 4, 5) \Rightarrow (2, 4, 1, 5, 3) \Rightarrow (4, 5, 2, 3, 1)$

Results

Two differential attacks

- Attacks require collection of the whole codebook, 2^{48} plaintext-ciphertext pairs
- Only able to break 22 rounds of the cipher

 2^b

 $\overline{2^b}$

Block Cipher

b-bit block n-bit key

Between Round Functions Inside a Block Cipher

Between Round Functions Inside a Invariant Subspace

Round Function Depends on

■ Key xor

- Key xor
- **Linear Diffusion**

- Key xor
- **Linear Diffusion**
- Round Counter addition

- Key xor
- **Linear Diffusion**
- Round Counter addition
- **Keyed Permutation**

- Key xor
- **Linear Diffusion**
- Round Counter addition
- **Keyed Permutation**
- (S_{box}) Layer

- ■ Key xor
- **Linear Diffusion**
- Round Counter addition
- **Keyed Permutation**
- (S_{box}) Layer

- ■ Key xor (SK_1) ← KEY DEPENDENT
- **Linear Diffusion** (P)
- Round Counter addition (RC)
- Keyed Permutation (SK_2) ← KEY DEPENDENT
- (S_{box}) Layer

- ■ Key xor (SK_1) ← KEY DEPENDENT
- **Linear Diffusion** (P)
- Round Counter addition (RC)
- Keyed Permutation (SK_2) ← KEY DEPENDENT
- (S_{box}) Layer

$$
R = \hat{R}(SK_1, P, RC, SK_2, S_{box})
$$

Undisturbed Bits

S-Boxes mapping to themselves

Example Iterative Round

Xor key = 01* *11 *** *** 01* *11 *** *** 01* *11 *** *** 01* *11 *** *** Perm. key = $0*11$ ** ** 10 01 ** ** 11 *0 ** ** *0 11 ** **

Weak Keys

Weak Keys

- 2^{-16} XOR keys
- 2^{-13} permutations keys
- 2^{51} weak keys out of 2^{80} total keys

Weak Keys

Weak Keys

- 2^{-16} XOR keys
- 2^{-13} permutations keys
- 2^{51} weak keys out of 2^{80} total keys
- This attack is independent of number of rounds!
- Distinguisher for any number of rounds

PRINT Cipher - 96 bit block

 2^{101} weak keys out of 2^{160} total keys

Protection Against the Attack

Remedies

- Spread the round function RC_i to last 3 S_{box}
- 2-bits in each S_{box} without any extra hardware cost

