Linear Cryptanalysi 0000000 Differential Cryptanalysis 00000 Invariant Subspace

PRINT Cipher

Berkay Akçören

MIDDLE EAST TECHNICAL UNIVERSITY

Informatics Institute, Department of Cyber Security

Last Modified: December 18, 2024 Created: December 18, 2024

General Information

 Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- Effective Key Length: $\frac{5}{3} \times \text{Block Size} = SK_1 ||SK_2|$

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- Effective Key Length: $\frac{5}{3} \times \text{Block Size} = SK_1 ||SK_2|$
- **Rounds:** 48 or 96

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- Effective Key Length: $\frac{5}{3} \times \text{Block Size} = SK_1 ||SK_2|$
- **Rounds:** 48 or 96
- There is no key schedule, constant round key

General Information

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- Effective Key Length: $\frac{5}{3} \times \text{Block Size} = SK_1 ||SK_2|$
- **Rounds:** 48 or 96
- There is no key schedule, constant round key

Security Goals

Side-channel attacks are not considered

General Information

- Designed by Lars Knudsen, Gregor Leander, Axel Poschmann and Matthew J.B. Robshaw published in 2010
- A lightweight design specifically for IC Printing.
- Block Size: 48 or 96 bits
- Effective Key Length: $\frac{5}{3} \times \text{Block Size} = SK_1 ||SK_2|$
- **Rounds:** 48 or 96
- There is no key schedule, constant round key

Security Goals

- Side-channel attacks are not considered
- Related-key attacks are not considered

PRINT Cipher

Linear Cryptanalys

Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

General Information

• Key Addition: Cipher state xor with round key SK_1

Linear Cryptanalys

Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- Key Addition: Cipher state xor with round key SK_1
- Linear Diffusion: Cipher state shuffled with fixed permutation layer

Linear Cryptanalys 0000000 Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- Linear Diffusion: Cipher state shuffled with fixed permutation layer
- **Round Counter addition** RC_i: Round constant addition with bitwise xor

PRINT Cipher 00●00000 Linear Cryptanalysis 0000000 Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- Linear Diffusion: Cipher state shuffled with fixed permutation layer
- **Round Counter addition** *RC_i*: Round constant addition with bitwise xor
- **Keyed Permutation:** Permutation operation on each 3 bit dependent on SK₂

PRINT Cipher 00●00000 Linear Cryptanalysis

Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- Linear Diffusion: Cipher state shuffled with fixed permutation layer
- **Round Counter addition** *RC_i*: Round constant addition with bitwise xor
- **Keyed Permutation:** Permutation operation on each 3 bit dependent on SK₂
- S_{box} Layer: Non-linear S_{box}

PRINT Cipher 00●00000 Linear Cryptanalysis

Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **Key Addition:** Cipher state xor with round key SK_1
- Linear Diffusion: Cipher state shuffled with fixed permutation layer
- **Round Counter addition** *RC_i*: Round constant addition with bitwise xor
- **Keyed Permutation:** Permutation operation on each 3 bit dependent on SK₂
- S_{box} Layer: Non-linear S_{box}

Linear Cryptanalys 0000000 Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

Linear Diffusion Layer

Simple permutation defined as

$$P(i) = \begin{cases} 3 \times i \mod b - 1 & \text{for } 0 \ge i \ge b - 2, \\ b - 1 & \text{for } i = b - 1. \end{cases}$$

PRINT Cipher 0000€000

Linear Cryptanalys 0000000 Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

Round Counter Addition

Round counters are generated using n-bit LFSR in the following way

$$t = 1 + x_{n-1} + x_{n-2}$$
$$x_i = x_{i-1} \quad \text{for } n-1 \ge i \ge 1$$
$$x_0 = t$$

Linear Cryptanalysis 0000000 Differential Cryptanalysis

PRINT Cipher: S_{box} and Keyed Permutation

S_{box}

x	0	1	2	3	4	5	6	7
S[x]	0	1	3	6	7	4	5	2

Permuted S_{box}

- $\bullet K = SK_1 || SK_2$
- SK_1 is *b*-bit long
- SK_2 is $\frac{2}{3}b$ -bit long, which is $\frac{b}{3}$ pair bits.
- Change the order of the 3 input bits for different values of $a_1 || a_2$ in SK_2

$a_1 a_0$		x	0	1	2	3	4	5	6	7
00	$c_2 c_1 c_0$	$V_0[x]$	0	1	3	6	7	4	5	2
01	$c_1 c_2 c_0$	$V_1[x]$	0	1	7	4	3	5	6	2
10	$c_2 c_0 c_1$	$V_2[x]$	0	3	1	6	7	5	4	2
11	$c_0 c_1 c_2$	$V_3[x]$	0	7	3	5	1	4	6	2

Linear Cryptanalys

Differential Cryptanalysis 00000 Invariant Subspace

PRINT Cipher

8 / 33

Linear Cryptanalys 0000000 Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

Example single round encryption for b = 48-bit block size

1 Pick key: $SK_1 || SK_2$ which is 48 + 32 bits long.

Linear Cryptanalys

Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **1** Pick key: $SK_1 || SK_2$ which is 48 + 32 bits long.
- **2 Key** xor: $SK_1 \oplus STATE$

Linear Cryptanalys

Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **1** Pick key: $SK_1 || SK_2$ which is 48 + 32 bits long.
- **2 Key** xor: $SK_1 \oplus STATE$
- **3 Linear diffusion:** Move bits around

Linear Cryptanalys

Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **1** Pick key: $SK_1 || SK_2$ which is 48 + 32 bits long.
- **2** Key xor: $SK_1 \oplus STATE$
- **3 Linear diffusion:** Move bits around
- **4 Round counter:** $RC_i \oplus STATE$

Linear Cryptanalysis 0000000 Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **1** Pick key: $SK_1 || SK_2$ which is 48 + 32 bits long.
- **2 Key** xor: $SK_1 \oplus STATE$
- 3 Linear diffusion: Move bits around
- **4 Round counter:** $RC_i \oplus STATE$
- **5 Keyed permutation:** $SK_2 = 32$ bit key. Change the order of the bits OR determine S_{box} for each pair bit

Linear Cryptanalysis 0000000 Differential Cryptanalysis

Invariant Subspace

PRINT Cipher: Round Function

- **1** Pick key: $SK_1 || SK_2$ which is 48 + 32 bits long.
- **2 Key** xor: $SK_1 \oplus STATE$
- 3 Linear diffusion: Move bits around
- **4 Round counter:** $RC_i \oplus STATE$
- **5 Keyed permutation:** $SK_2 = 32$ bit key. Change the order of the bits OR determine S_{box} for each pair bit
- **6** S_{box} **layer:** Regular S_{box} operation.

Linear Cryptanalysis 000000 Differential Cryptanalysis 00000 Invariant Subspace

Example Case of Linear Cryptanalysis

4-bit Block Example

4-bit input plaintext is encrypted into 4-bit output ciphertext

 $p_3p_2p_1p_0 \xrightarrow{ENC} c_3c_2c_1c_0$

Linear Cryptanalysis 000000 Differential Cryptanalysis

Invariant Subspace

Example Case of Linear Cryptanalysis

4-bit Block Example

4-bit input plaintext is encrypted into 4-bit output ciphertext

$$p_3p_2p_1p_0 \xrightarrow{ENC} c_3c_2c_1c_0$$

• We try to find a relation between arbitrary input and output bits

$$P(p_2 \oplus p_1 \oplus c_0 = 1) = \frac{1}{2} \pm \epsilon$$

For a random permutation $\epsilon = 0$

Linear Cryptanalysis

Differential Cryptanalysis

Observation on S_{box}

Perm. Key	00	01	10	11
(c_2, c_1, c_0)	$S(c_2, c_1, c_0)$	$S(c_1, c_2, c_0)$	$S(c_2, c_0, c_1)$	$S(c_0, c_1, c_2)$
(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
(0, 0, 1)	(0,0,1)	(0,0,1)	(0,1,1)	(1, 1, 1)
(0, 1, 0)	(0,1,1)	(1,1,1)	(0,0,1)	(0, 1, 1)
(0, 1, 1)	(1, 1, 0)	(1,0,0)	(1,1,0)	(1, 0, 1)
(1, 0, 0)	(1, 1, 1)	(0,1,1)	(1,1,1)	(0, 0, 1)
(1, 0, 1)	(1, 0, 0)	(1, 1, 0)	(1,0,1)	(1, 0, 0)
(1, 1, 0)	(1, 0, 1)	(1,0,1)	(1, 0, 0)	(1, 1, 0)
(1, 1, 1)	(0, 1, 1)	(0,1,1)	(0,1,1)	(0, 1, 1)

Linear Cryptanalysis

Differential Cryptanalysis

Invariant Subspace

Possible keys for bit rotations

Bit Move	Possible Keys
$c_0 \rightarrow c_0$	(0,0),(0,1)
$c_1 \rightarrow c_0$	(1, 0)
$c_2 \rightarrow c_0$	(1, 1)
$c_0 \rightarrow c_1$	(1, 0)
$c_1 \rightarrow c_1$	(0,0),(1,1)
$c_2 \rightarrow c_1$	(0, 1)
$c_0 \rightarrow c_2$	(1, 1)
$c_1 \rightarrow c_2$	(0,1)
$c_2 \rightarrow c_2$	(0,0),(1,0)

Attack Idea

Attack Idea

- Assume permutation bit at left-most S_{box} as $SK_2^{(31,30)}=(\ast 0)$
- 2 out of 4 keys this happens
- Probability of left-most bit remains unaltered is $\frac{3}{4}$
- After 1 round of encryption

$$P(c_{47} = p_{47} \oplus SK_1^{47}) = \frac{1}{2} + 2^{-2}$$

After 2 rounds of encryption

$$P(c_{47} = p_{47}) = \frac{1}{2} + 2^{-3}$$

 \blacksquare After r rounds of encryption for even r

$$P(c_{47} = p_{47}) = \frac{1}{2} + 2^{-r-1}$$

Linear Cryptanalysis

Differential Cryptanalysis 00000 Invariant Subspace

Extended 25-Round Attack

Differential Cryptanalysis 00000

Extended 25-Round Attack

Attack Idea

- Assume $SK_2^{30} = 0$
- \blacksquare Guess $SK_1^{(47,42,37,31,26,21,15,10,5)}$ and $SK_2^{(21,20,19,3)}$ for encryption
- \blacksquare Guess $SK_1^{(47,46,45)}$ and $SK_2^{(18,16)}$ for decryption
- \blacksquare Total of $2^{13}\times 3^3\approx 2^{17.8}$
- 2 Rounds of encryption and decryption
- \blacksquare If $c_{47}^{enc}=p_{47}^{enc}\oplus SK_1^{47}$ increase the counter of the guess
- Highest counter assumed to be correct guess.

Results

Other Attacks with Different Trials

All attacks require collection of the whole codebook, $2^{48}\ {\rm plaintext-ciphertext}\ {\rm pairs}.$

Rounds	# of enc/dec
27	2^{36}
28	2^{67}
29	2^{76}

Linear Cryptanaly 0000000 Differential Cryptanalysis

Invariant Subspace

Differentials in Print Cipher

Difficulties

- Main technical problem is differentials are Key-dependent
- Without knowing the key, one cannot find the best differential

Linear Cryptanalysi

Differential Cryptanalysis

Invariant Subspace

Differential Distribution Table

x	0	1	2	3	4	5	6	7
S[x]	0	1	3	6	7	4	5	2

	0_x	1_x	2_x	3_x	4_x	5_x	6_x	7_x
0_x	8	0	0	0	0	0	0	0
1_x	0	2	0	2	0	2	0	2
2_x	0	0	2	2	0	0	2	2
3_x	0	2	2	0	0	2	2	0
4_x	0	0	0	0	2	2	2	2
5_x	0	2	0	2	2	0	2	0
6_x	0	0	2	2	2	2	0	0
7_x	0	2	2	0	2	0	0	2

Two Differential Attacks

Optimal Characteristic

- There exist a 1-bit to 1-bit difference in every bit location with probability $\frac{1}{4}$
- For r many rounds, there is at least one differential with of one with the probability $(1/4)^r$
- For r = 22 rounds, one can successfully construct a distinguisher with probability 2^{-44}

Obtaining the roots of PRINT Cipher's permutation layer

- Constructing a 22 round distinguisher requires full codebook i.e. 2⁴⁸ plaintext-ciphertext pairs.
- Attacker can form 2^{47} plaintext pairs for every 1-bit difference
- Therefore, attacker can learn the permutation PK^r for r = 22 rounds.
- If one can somehow find the roots of permutations i.e. PK by looking at the RK^r , get the permutation key SK_2 and then get the SK_1

Differential Cryptanalysis

Roots of Permutations

Example Case

• (1, 2, 3, 4, 5) is mapped on to (4, 5, 2, 3, 1)

Roots of Permutations

Example Case

- (1,2,3,4,5) is mapped on to (4,5,2,3,1)
- $\blacksquare~(1,2,3,4,5)$ is mapped on to (2,4,1,5,3)

Roots of Permutations

Example Case

- (1,2,3,4,5) is mapped on to (4,5,2,3,1)
- (1,2,3,4,5) is mapped on to (2,4,1,5,3)
- $\blacksquare~(2,4,1,5,3)$ is a square root of (4,5,2,3,1)

Roots of Permutations

Example Case

- (1,2,3,4,5) is mapped on to (4,5,2,3,1)
- (1,2,3,4,5) is mapped on to (2,4,1,5,3)
- $\blacksquare~(2,4,1,5,3)$ is a square root of (4,5,2,3,1)
- $\bullet \ (1,2,3,4,5) \Rightarrow (2,4,1,5,3) \Rightarrow (4,5,2,3,1)$

Results

Two differential attacks

- Attacks require collection of the whole codebook, 2^{48} plaintext-ciphertext pairs
- Only able to break 22 rounds of the cipher

PRINT	Cipher
	0000

Block Cipher

b-bit block

Linear Cryptanaly:

Differential Cryptanalysis

Invariant Subspace

Block Cipher

- b-bit block
- n-bit key

Linear Cryptanalys 0000000 Differential Cryptanalysis

Between Round Functions Inside a Block Cipher

Linear Cryptanalys 0000000 Differential Cryptanalysis 00000 Invariant Subspace

Between Round Functions Inside a Invariant Subspace

Linear Cryptanaly 0000000 Differential Cryptanalysis

Invariant Subspace

Round Function

Round Function Depends on

Key xor

- Key xor
- Linear Diffusion

- Key xor
- Linear Diffusion
- Round Counter addition

- Key xor
- Linear Diffusion
- Round Counter addition
- Keyed Permutation

- Key xor
- Linear Diffusion
- Round Counter addition
- Keyed Permutation
- (S_{box}) Layer

- Key xor
- Linear Diffusion
- Round Counter addition
- Keyed Permutation
- (S_{box}) Layer

- Key xor $(SK_1) \leftarrow \text{KEY DEPENDENT}$
- Linear Diffusion (P)
- **Round Counter addition** (RC)
- Keyed Permutation $(SK_2) \leftarrow \text{KEY DEPENDENT}$
- (S_{box}) Layer

- Key xor $(SK_1) \leftarrow \text{KEY DEPENDENT}$
- Linear Diffusion (P)
- **Round Counter addition** (RC)
- Keyed Permutation $(SK_2) \leftarrow \text{KEY DEPENDENT}$
- (S_{box}) Layer

$$R = \hat{R}(SK_1, P, RC, SK_2, S_{box})$$

S-Box

Undisturbed Bits

S(000) = 000 S(001) = 001	\Leftrightarrow	S(00*) = 00*
S(100) = 111 S(110) = 101	\Leftrightarrow	S(1*0) = 1*0
S(011) = 110 S(111) = 010	\Leftrightarrow	S(*11) = *10

Linear Cryptanalysi 0000000 Differential Cryptanalysis

Invariant Subspace

S-Boxes mapping to themselves

Example Iterative Round

- Perm. key = 0* 11 ** ** 10 01 ** ** 11 *0 ** ** *0 11 ** **

Start	00* *10 *** *** 00* *10 *** *** 00* *10 *** ***
Key xoring	01* *01 *** *** 01* *01 *** *** 01* *01 *** ***
Lin. layer	00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** ***
RC	00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** ***
Perm. layer	00* *11 *** *** 00* *11 *** *** 00* *11 *** ***
S-box layer	00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

Weak Keys

Weak Keys

- $\blacksquare 2^{-16}$ XOR keys
- 2^{-13} permutations keys
- 2^{51} weak keys out of 2^{80} total keys

Weak Keys

Weak Keys

- $\blacksquare~2^{-16}$ XOR keys
- 2^{-13} permutations keys
- $\blacksquare~2^{51}$ weak keys out of 2^{80} total keys
- This attack is independent of number of rounds!
- Distinguisher for any number of rounds

PRINT Cipher - 96 bit block

 $\blacksquare~2^{101}$ weak keys out of 2^{160} total keys

Protection Against the Attack

Remedies

- Spread the round function RC_i to last 3 S_{box}
- **2**-bits in each S_{box} without any extra hardware cost

